
HOWTO SQL: SIERRA - PART 1
Ray Voelker

ray.voelker@cincinnatilibrary.org

LINKS FOR THIS PRESENTATION:
Slides:

PDF Slides:

SQL Sandbox:

https://rayvoelker.github.io/iug2021/

https://rayvoelker.github.io/iug2021/slides.pdf

https://howtosql.cincy.pl/iug2021/

https://rayvoelker.github.io/iug2021/
https://rayvoelker.github.io/iug2021/slides.pdf
https://howtosql.cincy.pl/iug2021/

MEET JEREMY AND RAY
...and Rufus and Audrey

OVERVIEW OF RELATIONAL
DATABASES

Data in these types of databases are stored in
collections, or tables
Tables have a number of rows and columns
Each row is (o�en) represented with a unique key.

OVERVIEW OF RELATIONAL
DATABASES: KEYS

Keys (typically called ID’s in the Sierra Database) come
in two varieties, and they define the relationship
between tables.

Primary Key
Foreign Key

OVERVIEW OF DATABASE ENTITY-
RELATIONSHIP MODEL

(ERM VIEW)
Defines the types of relationships that can exist
between entities (tables)

One-to-One
One-to-Many (most common relationship)
Many-to-Many

DATABASE ENTITY-
RELATIONSHIP MODEL

ONE-TO-ONE
A Country can have one (and only one) Capital City
A Capital City can have one (and only one) Country

DATABASE ENTITY-
RELATIONSHIP MODEL

ONE-TO-ONE

DATABASE ENTITY-
RELATIONSHIP MODEL

ONE-TO-MANY
A Mother may have many Children
A Child has only one (biological) Mother

DATABASE ENTITY-
RELATIONSHIP MODEL

ONE-TO-MANY

DATABASE ENTITY-
RELATIONSHIP MODEL

MANY-TO-MANY
Authors can write several Books
Books can be written by several Authors

DATABASE ENTITY-
RELATIONSHIP MODEL

MANY-TO-MANY

Relational Databases: Relationships (JOINS)

Sets of data can be derived from Relational
Operators from traditional math sets.
We'll cover two of the more common JOIN
operations

JOIN (or INNER JOIN)
LEFT JOIN (or LEFT OUTER JOIN)

Relational Databases: Relationships (JOINS) cont.

JOIN (OR INNER JOIN)
Most common type of join that there is
Given two sets, A (le�) and B (right), performing this
join will return a set containing all elements of A that
also belong to B.

Relational Databases: Relationships (JOINS) cont.

LEFT JOIN (OR LEFT OUTER JOIN)
Given two sets, A (le�) and B (right) performing this
join will return a set containing all elements of table
A, as well as the elements of A that also belong to B

SQL OVERVIEW
Structured Query Language
Standardized language that allows a user to
interface with a relational database

SQL Overview cont.

SQL statements are groups of clauses or other
statements that define the operation on the
database
Some of the more common statements include the
following... (SQL is picky about the order in which
these statements appear in so they're presented in
the order that they can appear in the statement.)

SQL Overview cont.

SELECT
Retrieves data from tables
Most commonly used statement

UPDATE and SET
Modifies a set of existing table rows

DELETE
Remove set of existing rows from the table

SQL Overview cont.

CREATE (TEMPORARY TABLE)
Typically used to create a table in the database
Can be used to create TEMPORARY table for use in
subsequent queries
(exists for the duration of a database session, and
is dropped when the connection or session ends)

SQL Overview cont.

JOIN / LEFT JOIN / etc
Performing a join will combine the data with that
of another table

FROM
Indicates which table to retrieve data from

SQL Overview cont.

WHERE / WHERE IN
Include or exclude data based on comparisons

GROUP BY
Reduces sets into common values

HAVING
Allows for filtering of the GROUP BY statement

SQL Overview cont.

ORDER BY
Sort the set
in ascending order (ASC)
or descending order (DESC)

LIMIT / OFFSET
Returns specific numbers of rows from given
starting point
Usually used in conjunction with the ORDER BY
clause to ensure the set is always presented in the
same order

SQL SELECT STATEMENTS
FINALLY SOME EXAMPLES!
Let us say we wanted a list ...

Bib Record info
10 Oldest (earliest dates created)

The following query would give us a very basic view
of those records:

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions4
 5
FROM6
sierra_view.record_metadata AS r7
 8
WHERE9
r.record_type_code = 'b'10
 11
ORDER BY12
r.creation_date_gmt ASC13

r.id, r.record_type_code,
r.record_num, r.creation_date_gmt,
r.deletion_date_gmt, r.num_revisions

SELECT1
2
3
4

 5
FROM6
sierra_view.record_metadata AS r7
 8
WHERE9
r.record_type_code = 'b'10
 11
ORDER BY12
r.creation_date_gmt ASC13

FROM

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions4
 5

6
sierra_view.record_metadata AS r7
 8
WHERE9
r.record_type_code = 'b'10
 11
ORDER BY12
r.creation_date_gmt ASC13

sierra_view.record_metadata AS r

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions4
 5
FROM6

7
 8
WHERE9
r.record_type_code = 'b'10
 11
ORDER BY12
r.creation_date_gmt ASC13

WHERE

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions4
 5
FROM6
sierra_view.record_metadata AS r7
 8

9
r.record_type_code = 'b'10
 11
ORDER BY12
r.creation_date_gmt ASC13

r.record_type_code = 'b'

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions4
 5
FROM6
sierra_view.record_metadata AS r7
 8
WHERE9

10
 11
ORDER BY12
r.creation_date_gmt ASC13
ORDER BY

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions4
 5
FROM6
sierra_view.record_metadata AS r7
 8
WHERE9
r.record_type_code = 'b'10
 11

12
r.creation_date_gmt ASC13 r.creation_date_gmt ASC

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions4
 5
FROM6
sierra_view.record_metadata AS r7
 8
WHERE9
r.record_type_code = 'b'10
 11
ORDER BY12

13

SELECT
r.id, r.record_type_code,
r.record_num, r.creation_date_gmt,
r.deletion_date_gmt, r.num_revisions

FROM
sierra_view.record_metadata AS r

WHERE
r.record_type_code = 'b'

ORDER BY
r.creation_date_gmt ASC

1
2
3
4
5
6
7
8
9
10
11
12
13

Filter by specific bib numbers ...
SELECT
r.id, r.record_type_code,
r.record_num, r.creation_date_gmt,
r.deletion_date_gmt, r.num_revisions

FROM
record_metadata AS r

WHERE
r.record_type_code = 'b'

1
2
3
4
5
6
7
8
9
10

AND r.record_num IN (11
1000001, 1000032, 1000041, 1000045, 1000056, 12
1000139, 1000303, 1000345, 1000410, 100042613
)14
 15

AND r.record_num IN (
1000001, 1000032, 1000041, 1000045, 1000056,
1000139, 1000303, 1000345, 1000410, 1000426
)

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions4
 5
FROM6
record_metadata AS r7
 8
WHERE9
r.record_type_code = 'b'10

11
12
13
14

 15

SQL SELECT Statement cont.

This is ok, but maybe we also wanted "Title" from
the bib record
We'll use a JOIN!
Looks like table has what we
need

"bib_record_property"

https://techdocs.iii.com/sierradna/Home,$DirectLink.sdirect?sp=SBib

JOIN table bib_record_property ...
SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions,4
p.best_title5
 6
FROM7
record_metadata AS r8
 9
JOIN bib_record_property AS p 10
 ON p.bib_record_id = r.id11
 12
WHERE13
r.record_type_code = 'b'14
AND r.record_num IN (15

p.best_title

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions,4

5
 6
FROM7
record_metadata AS r8
 9
JOIN bib_record_property AS p 10
 ON p.bib_record_id = r.id11
 12
WHERE13
r.record_type_code = 'b'14
AND r.record_num IN (15

JOIN bib_record_property AS p
 ON p.bib_record_id = r.id

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions,4
p.best_title5
 6
FROM7
record_metadata AS r8
 9

10
11

 12
WHERE13
r.record_type_code = 'b'14
AND r.record_num IN (15

SQL SELECT Statement cont.

Table, "bib_record_property", has no foreign key for
the deleted record and therefore won’t be joined in
our results
We can fix this!
... with a LEFT JOIN (or LEFT OUTER JOIN)!

JOIN LEFT OUTER JOIN table bib_record_property ...
SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions,4
p.best_title5
 6
FROM7
record_metadata AS r8
 9
-- JOIN bib_record_property as p10
LEFT OUTER JOIN bib_record_property as p11
 ON p.bib_record_id = r.id12
 13
WHERE14
r.record_type_code = 'b'15

-- JOIN bib_record_property as p
LEFT OUTER JOIN bib_record_property as p
 ON p.bib_record_id = r.id

SELECT1
r.id, r.record_type_code, 2
r.record_num, r.creation_date_gmt, 3
r.deletion_date_gmt, r.num_revisions,4
p.best_title5
 6
FROM7
record_metadata AS r8
 9

10
11
12

 13
WHERE14
r.record_type_code = 'b'15

SQL GROUP BY / HAVING AND
AGGREGATE FUNCTIONS

GROUP BY
Reduces sets into common values, or groups
results of one or more column together
O�en used along with aggregate functions

COUNT()
SUM()
MAX()

SQL GROUP BY / HAVING and Aggregate Functions
cont.

How many Titles are there in our database that have
publish_year of 1977?

SQL GROUP BY / HAVING and Aggregate Functions
cont.

SELECT
p.publish_year,
count(*) as count

1
2
3

 4
FROM5
bib_record_property as p6
 7
WHERE8
p.publish_year = 19779
 10
GROUP BY11
p.publish_year12

FROM
bib_record_property as p

SELECT1
p.publish_year,2
count(*) as count3
 4

5
6

 7
WHERE8
p.publish_year = 19779
 10
GROUP BY11
p.publish_year12

WHERE
p.publish_year = 1977

SELECT1
p.publish_year,2
count(*) as count3
 4
FROM5
bib_record_property as p6
 7

8
9

 10
GROUP BY11
p.publish_year12
GROUP BY
p.publish_year

SELECT1
p.publish_year,2
count(*) as count3
 4
FROM5
bib_record_property as p6
 7
WHERE8
p.publish_year = 19779
 10

11
12

SQL GROUP BY / HAVING and Aggregate Functions
cont.

When grouped by publish_year How many
publish_year values are there having a count of
exactly 200 titles?

SQL GROUP BY / HAVING and Aggregate Functions
cont.

SELECT
p.publish_year,
count(*) as count

1
2
3

 4
FROM5
bib_record_property as p6
 7
GROUP BY8
p.publish_year9
 10
HAVING11
count(*) = 20012

FROM
bib_record_property as p

SELECT1
p.publish_year,2
count(*) as count3
 4

5
6

 7
GROUP BY8
p.publish_year9
 10
HAVING11
count(*) = 20012

GROUP BY
p.publish_year

SELECT1
p.publish_year,2
count(*) as count3
 4
FROM5
bib_record_property as p6
 7

8
9

 10
HAVING11
count(*) = 20012
HAVING
count(*) = 200

SELECT1
p.publish_year,2
count(*) as count3
 4
FROM5
bib_record_property as p6
 7
GROUP BY8
p.publish_year9
 10

11
12

SQL GROUP BY / HAVING and Aggregate Functions
cont.

What are the top 5 most popular titles (by item
checkout_total + renewal_total) for items currently
in the location "Blue Ash Documentaries"?

SQL GROUP BY / HAVING and Aggregate Functions
cont.

FROM
item_record AS i

SELECT1
p.best_title,2
r.record_num AS bib_record_num, 3
sum(i.checkout_total + i.renewal_total) AS total_circ4
 5

6
7

 8
JOIN9
bib_record_item_record_link as l10
 ON l.item_record_id = i.record_id11
 12
JOIN13
bib_record_property AS p14
 ON p.bib_record_id = l.bib_record_id15

JOIN
bib_record_item_record_link as l
 ON l.item_record_id = i.record_id

SELECT1
p.best_title,2
r.record_num AS bib_record_num, 3
sum(i.checkout_total + i.renewal_total) AS total_circ4
 5
FROM6
item_record AS i7
 8

9
10
11

 12
JOIN13
bib_record_property AS p14
 ON p.bib_record_id = l.bib_record_id15

JOIN
bib_record_property AS p
 ON p.bib_record_id = l.bib_record_id

SELECT1
p.best_title,2
r.record_num AS bib_record_num, 3
sum(i.checkout_total + i.renewal_total) AS total_circ4
 5
FROM6
item_record AS i7
 8
JOIN9
bib_record_item_record_link as l10
 ON l.item_record_id = i.record_id11
 12

13
14
15

SELECT1
p.best_title,2
r.record_num AS bib_record_num, 3
sum(i.checkout_total + i.renewal_total) AS total_circ4
 5
FROM6
item_record AS i7
 8
JOIN9
bib_record_item_record_link as l10
 ON l.item_record_id = i.record_id11
 12
JOIN13
bib_record_property AS p14
 ON p.bib_record_id = l.bib_record_id15

SELECT
p.best_title,
r.record_num AS bib_record_num,
sum(i.checkout_total + i.renewal_total) AS total_circ

1
2
3
4

 5
FROM6
item_record AS i7
 8
JOIN9
bib_record_item_record_link as l10
 ON l.item_record_id = i.record_id11
 12
JOIN13
bib_record_property AS p14
 ON p.bib_record_id = l.bib_record_id15

SELECT1
p.best_title,2
r.record_num AS bib_record_num, 3
sum(i.checkout_total + i.renewal_total) AS total_circ4
 5
FROM6
item_record AS i7
 8
JOIN9
bib_record_item_record_link as l10
 ON l.item_record_id = i.record_id11
 12
JOIN13
bib_record_property AS p14
 ON p.bib_record_id = l.bib_record_id15

SELECT1
p.best_title,2
r.record_num AS bib_record_num, 3
sum(i.checkout_total + i.renewal_total) AS total_circ4
 5
FROM6
item_record AS i7
 8
JOIN9
bib_record_item_record_link as l10
 ON l.item_record_id = i.record_id11
 12
JOIN13
bib_record_property AS p14
 ON p.bib_record_id = l.bib_record_id15

SELECT
p.best_title,
r.record_num AS bib_record_num,
sum(i.checkout_total + i.renewal_total) AS total_circ

FROM
item_record AS i

JOIN
bib_record_item_record_link as l
 ON l.item_record_id = i.record_id

JOIN
bib_record_property AS p
 ON p.bib_record_id = l.bib_record_id

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Subquery

Subqueries are simply nested queries
Can occur in the SELECT, FROM, or WHERE clauses
Useful to use to use as a filter in the WHERE clause,
or limiting to a single value in the SELECT clause
(unexpected one-to-many situations)

Subquery cont.

Are there multiple barcodes associated with single
item records?

Start by getting a set of item record ID values
where the item_record_id appears multiple times
when joining to the barcode varfield value

Subquery cont.
SELECT
ir.record_id

FROM
item_record as ir

1
2
3
4
5

 6
JOIN varfield AS vf 7
 ON vf.record_id = ir.record_id8
 AND vf.varfield_type_code = 'b'9
 10
GROUP BY11
ir.record_id12
 13
HAVING14
count(*) > 115

JOIN varfield AS vf
 ON vf.record_id = ir.record_id
 AND vf.varfield_type_code = 'b'

SELECT1
ir.record_id2
 3
FROM4
item_record as ir5
 6

7
8
9

 10
GROUP BY11
ir.record_id12
 13
HAVING14
count(*) > 115

GROUP BY
ir.record_id

SELECT1
ir.record_id2
 3
FROM4
item_record as ir5
 6
JOIN varfield AS vf 7
 ON vf.record_id = ir.record_id8
 AND vf.varfield_type_code = 'b'9
 10

11
12

 13
HAVING14
count(*) > 115
HAVING
count(*) > 1

SELECT1
ir.record_id2
 3
FROM4
item_record as ir5
 6
JOIN varfield AS vf 7
 ON vf.record_id = ir.record_id8
 AND vf.varfield_type_code = 'b'9
 10
GROUP BY11
ir.record_id12
 13

14
15

Subquery cont.
SELECT1
i.record_id as item_record_id,2
r.record_num as item_record_num,3
i.location_code,4
v.field_content,5
v.occ_num6
 7
FROM8
item_record as i9
 10
JOIN11
record_metadata as r12
 ON r.id = i.record_id13
 14
JOIN varfield AS v 15

SELECT1
i.record_id as item_record_id,2
r.record_num as item_record_num,3
i.location_code,4
v.field_content,5
v.occ_num6
 7
FROM8
item_record as i9
 10
JOIN11
record_metadata as r12
 ON r.id = i.record_id13
 14
JOIN varfield AS v 15

FROM
item_record as i

SELECT1
i.record_id as item_record_id,2
r.record_num as item_record_num,3
i.location_code,4
v.field_content,5
v.occ_num6
 7

8
9

 10
JOIN11
record_metadata as r12
 ON r.id = i.record_id13
 14
JOIN varfield AS v 15

JOIN
record_metadata as r
 ON r.id = i.record_id

JOIN varfield AS v

SELECT1
i.record_id as item_record_id,2
r.record_num as item_record_num,3
i.location_code,4
v.field_content,5
v.occ_num6
 7
FROM8
item_record as i9
 10

11
12
13
14
15

SELECT
i.record_id as item_record_id,
r.record_num as item_record_num,
i.location_code,
v.field_content,
v.occ_num

1
2
3
4
5
6

 7
FROM8
item_record as i9
 10
JOIN11
record_metadata as r12
 ON r.id = i.record_id13
 14
JOIN varfield AS v 15

Subquery cont.

-- say we were targeting these two item records.

SELECT1
i.record_id,2
i.item_status_code,3
i.location_code,4
v.field_content5
 6
FROM7
item_record AS i8
 9
JOIN10
varfield AS v 11
 ON v.record_id = i.record_id12
 AND v.varfield_type_code = 'b'13
 14

15

SELECT
i.record_id,
i.item_status_code,
i.location_code,
v.field_content

1
2
3
4
5

 6
FROM7
item_record AS i8
 9
JOIN10
varfield AS v 11
 ON v.record_id = i.record_id12
 AND v.varfield_type_code = 'b'13
 14
-- say we were targeting these two item records.15

Subquery cont.

(
 SELECT
 v.field_content
 FROM
 varfield as v
 WHERE
 v.record_id = i.record_id
 AND v.varfield_type_code = 'b'
 ORDER BY
 v.occ_num
 LIMIT 1

SELECT1
i.record_id,2
i.item_status_code,3
i.location_code,4

5
6
7
8
9
10
11
12
13
14
15

CASE Statement

Returns a value when a condition is met
Helpful for

formatting one value into another value
creating values to aggregate on

CASE Statement cont.

Produce a list of item record numbers and give a
nicer name for the 'item_status_code' value

CASE Statement cont.

CASE
WHEN item_status_code = '-' THEN 'AVAILABLE'
WHEN item_status_code = 'o' THEN 'LIB USE ONLY'
ELSE item_status_code
END as our_item_status

SELECT1
r.record_num AS item_record_num, i.item_status_code,2

3
4
5
6
7

 8
FROM9
item_record as i10
 11
JOIN12
record_metadata as r13
 ON r.id = i.record_id14
 15

CASE Statement cont.

From the location "Main Children's Library" (1cj),
produce a count of items based on their last
circulation dates

'1-recent checkouts' = 2020-01-01 to Present
'2-kinda-recent checkouts' = 2018-01-01 to 2020-
01-01
'3-long-ago checkouts' = OLDER THAN '2018-01-
01'
'4-NO CHECKOUTS!' = no last checkout value

CASE Statement cont.

CASE
WHEN i.last_checkout_gmt >= '2020-01-01' THEN '1-recent che
WHEN i.last_checkout_gmt >= '2018-01-01' THEN '2-kinda-rece
WHEN i.last_checkout_gmt < '2018-01-01' THEN '3-long-ago c
WHEN i.last_checkout_gmt is null THEN '4-NO CHECKOUTS!'
END as 'last_checkout_groups'

SELECT1
 2
r.record_num as item_record_num,3
i.last_checkout_gmt,4

5
6
7
8
9
10

 11
FROM12
item_record as i13
 14
JOIN15

CASE Statement cont.

CASE
WHEN i.last_checkout_gmt >= '2020-01-01' THEN '1-recent che
WHEN i.last_checkout_gmt >= '2018-01-01' THEN '2-kinda-rece
WHEN i.last_checkout_gmt < '2018-01-01' THEN '3-long-ago c
WHEN i.last_checkout_gmt is null THEN '4-NO CHECKOUTS!'
END as 'last_checkout_groups',

SELECT1
2
3
4
5
6
7

count(*) as count_items8
 9
FROM10
item_record as i11
 12
WHERE13
i.location_code = '1cj'14
 15

count(*) as count_items

SELECT1
CASE2
WHEN i.last_checkout_gmt >= '2020-01-01' THEN '1-recent che3
WHEN i.last_checkout_gmt >= '2018-01-01' THEN '2-kinda-rece4
WHEN i.last_checkout_gmt < '2018-01-01' THEN '3-long-ago c5
WHEN i.last_checkout_gmt is null THEN '4-NO CHECKOUTS!'6
END as 'last_checkout_groups',7

8
 9
FROM10
item_record as i11
 12
WHERE13
i.location_code = '1cj'14
 15

SELECT1
CASE2
WHEN i.last_checkout_gmt >= '2020-01-01' THEN '1-recent che3
WHEN i.last_checkout_gmt >= '2018-01-01' THEN '2-kinda-rece4
WHEN i.last_checkout_gmt < '2018-01-01' THEN '3-long-ago c5
WHEN i.last_checkout_gmt is null THEN '4-NO CHECKOUTS!'6
END as 'last_checkout_groups',7
count(*) as count_items8
 9
FROM10
item_record as i11
 12
WHERE13
i.location_code = '1cj'14
 15

THANK YOU!
Other Useful Resources

IUG 2019 - Sierra SQL presentation material:

HOWTO SQL Sandbox ():
https://iug2019-sql.github.io/

Datasette
https://howtosql.cincy.pl/iug2021/

https://iug2019-sql.github.io/
https://docs.datasette.io/
https://howtosql.cincy.pl/iug2021/

