
Bring Your Own Projects
for Polaris Systems!

Derek Brown (Rochester Hills Public Library)

Joe Fee (Westmoreland Library Network)

 Derek Brown – Director of IT for the Rochester Hills Public Library
◆ Single Branch Library with 2 Bookmobiles serving a population of 100,500

◆ Circulation of around 2 million items

◆ IT staff of 2 FTE and 2 PTE (College Students)

 Joe Fee – Technology Coordinator for the Westmoreland Library Network
◆ 22 Libraries with 3 Branches and 1 Bookmobile serving a pop. of 355,000

◆ Circulation of around 1.2 million items

◆ IT staff of 2 FTE

 We wanted a platform to share projects openly with other Polaris users.

 Topics: Local School Database Sync to Polaris, Self-Built Polaris Telephony
System, Wireless Access Manager Integration with Polaris, and more…

Introduction

 The objective of this project is to establish secured automated data exchanges
of Rochester Community Schools Students’ data between Rochester Community
Schools (RCS) and Rochester Hills Public Library (RHPL) with a purpose of
automatic students’ enrollment into RHPL.

 Having an RHPL card provides students access to RHPL resources and allows
the library and public schools to share services.

 Automating this process made it easier on RCS staff, teachers, parents, and
librarians.

Rochester Hills Public Library and Rochester Public School Data Merge

Data Merge Project Description

Outbound Interface Data feed from RHPL to RCS

Inbound Interface Data feed from RCS to RHPL

Field Description DataType
RCSID RSC Student ID Int???
ActionCd Action Code CHAR (1)
FirstName First Name CHAR (30)
MiddleName Middle Name CHAR (30)
LastName Last Name CHAR (30)
Suffix Suffix CHAR (6)
Address Mailing Address CHAR (40)
City City CHAR (30)
Zip Zip Code CHAR (5)

BirthDt Birth Date DATE (8) (mmddyyyy)
HomePhoneNum Home Phone Number CHAR (10)

Field Description DataType
RCSID RSC Student ID Int???
RHPLCardNum RHPL Card Number CHAR (14)

Solution Overview:

Inbound Interface – file structure (inbound.txt) from RCS to RHPL

Outbound Interface – file structure (outbound.txt) from RHPL to RCS

Functional Requirements and Technical Details

Field

Field Name
Data

Type
Len Required Comments/Description

1. RCSID Int Y Universal Student ID. RCS will send a value

2. ACTION CODE Char 1 Y RCS will send a value

A – for all active students

I – for inactive students

3. FIRST NAME Char 30 Y RCS will send a value

4. MIDDLE NAME Char 30 N If no value, field is included but left blank in the input file.

5. LAST NAME Char 40 Y RCS will send a value

6. NAME SUFFIX Char 6 N If no value, field is included but left blank in the input file.

7. ADDRESS Char 40 Y RCS will send a value

8. CITY Char 30 Y RCS will send a value

9. ZIP Nbr 5 Y 4 digit extender is not required.

10. BIRTHDATE Date 8 Y RCS will send a value

11. HOME PHONE NUMBER Char 10 N RCS may send a value

Example: 2489999999

Data Guidelines – Inbound

Data Guidelines – Outbound
Field

Field Name
Data

Type
Len Required Comments/Description

1. RCSID Int Y Universal Student ID. RHPL will send a value

2. RHPL Card Number Char 14 Y RHPL will send a value

Import Process Details
Task Object Schedule What is done

1 Retrieve new RCS file from RCS FTP Scheduled Task/WS Script - using

WinSCP. Files are copied to

G:\RCSDataFiles

Friday

@ 9:28 pm

Scheduled Windows Task runs on Friday night and

downloads new file from RCS to a local folder. Also moves

server file to an Archive folder on RCS ftp server

2 Import RCS file to SQL Scheduled SQL Server dstx job Saturday

@ 6:00 am

Process new RHPL.txt file and exports records to dbo.RHPLc

temp table

3 Assign RHPL IDs to students without one Scheduled SQL Server dstx job

SQL Cursor code

Saturday

@ 6:00 am

Looking at RHPLc table and assigns an available RHPL id

from RHPLIDPool table to students who have blank RHPLid

4 Generate Import to Polaris file Scheduled SQL Server dstx job

calls RCSNewPolarisImport View

that is created to match required

syntax of Polaris offline

registration file

Saturday

@ 6:00 am

Generates polaris import file so new users can be imported

to Polaris DB via Polaris Offline Registration manual process

5 RenameRCSFiles VBScript/Scheduled Task Saturday

@ 7:20 am

Renames 3 files by adding date stamps to the names:

 rhpl.txt→ rhplyyyymmdd.txt

 Rochester.csv--> rochesteryyyymmdd.txt

 RCSPolarisImport.trn→

RCSPolarisImportyyyymmdd.trn

Import Process Details (Cont.)

6 RCSFtpAndMove VBScript/WS Script Saturday @ 8:30 Sends new RHPL file to RCS, moves

RCSPolarisImportyyyymmdd.trn to

C:\ProgramData\Polaris\5.0\OfflineTransaction

and also archives RCS and RHPL files to

G:\RCSDataFiles\Archive

7 Run Polaris Import Job MANUAL Requires manual support to import generated file

to Polaris Offline Registration tool for processing.

Follow Steps below.

Step 7 - Running Polaris Import File to generate new RCS accounts.

1) Log in to Polaris on Server

2) Choose Circulation → Bookmobile

3) Go to Tools → Options and choose option for All offline transaction/log files - click ok

4) Select RCSPolarisImportyyyymmdd.trn file under transactions to be uploaded window

5) Click on Upload and ignore errors recording them to the log

Task #1: Import Files

Task #5: Rename Files

Task #2-4: Run SQL Steps

Task #6: Upload Completed Files

 https://www.rhpl.org/IUG

 This directory contains all documentation, processing files (DTSX), and other
necessary pieces of code to mirror our project.

 Please feel free to contact with any questions:

Derek Brown (Director of IT @ Rochester Hills Public Library)

(248) 650-7123

Derek.Brown@rhpl.org

Downloads for RCS/RHPL Project

https://www.rhpl.org/IUG
https://www.rhpl.org/IUG

 The objective of this project is to:
◆ reduce the cost of mailing overdue notices

◆ reduce staff time

◆ add new reminder notice for patrons without email addresses

◆ add new hold pickup notice for patrons who still prefer mailing address

 Telephony Service saved over $7,000 in postage and supplies

WCFLS Telephony

 Polaris SQL Server

 WCFLS SQL Server

 Windows Service Application
◆ Developed using Visual Studios in Visual Basic.net

 Twilio Cloud Services

 Windows IIS Server
◆ Web App/API – developed using ASP.net in Visual Basic

 Polaris API

WCFLS Telephony Development

1. Extract/Format Data (Polaris SQL to
W-SQL)
a. Convert Print Holds to Telephone

b. Retrieve rows from Polaris SQL

c. Create reminders for non-email patrons

d. Create queue, group by patrons in W-
SQL

2. Send call list to Twilio using
Windows Service application

3. Twilio initiates call
a. Retrieves notification message from W-

API if call is answered

b. Call updates to W-API

4. Update Polaris API with notification
status from Windows Service

WCFLS Telephony Process

Web

App/API

Windows

Service

App

SQL

Server 
Twilio

Polaris
SQL

Polaris
API

Innovative

WCFLS

Twilio

 Query joining Results..NotificationQueue, Polaris..Patrons, and Polaris..PatronRegistration

Polaris Data Outbound

Field Description DataType

ItemRecordID Unique ID for Item Record INT

NotificationTypeID Notification Type INT

PatronID Unique ID for Patron Record INT

OrganizationID Library INT

NameFirst First Name of Patron CHAR(32)

DeliveryOptionID Delivery Type (3,4,5 – Phone 1, 2 or 3) INT

ReportingOrgID Library reporting notice INT

Amount* Amount due on account MONEY

CreationDate Date notice was posted in table DATETIME

 Queue Tables – List of calls with details of items
◆ TelephoneNoticeQueueTemp

◆ TelephonyCalls

◆ TelephonyCallDetails

 Transaction Tables
◆ TelephonyCallEvents

◆ TelephonyCallLogs

 Settings Tables
◆ AdminAttributes

◆ OrganizationSettings

◆ TelephonyPatronCodeExcludes

Telephony DB

 Polaris Data dumped into temporary table
◆ Build Unique PatronID list for Queue

 If PatronID does not exist in TelephonyCalls, add it, plus add notice details to TelephonyCallDetails

 If it does, add notice details to TelephonyCallDetails only

◆ If “Call Once Per Day” is active
 If Patron was already called, queue status is changed “Already Called”

◆ Sits in Queue until next day unless cancelled.

 Queue Cleanup
◆ If the notification in Polaris DB no longer exists

 Change status of item detail to Cancelled

 If other items exists call status remains as “Queued”

 If all items are cancelled, change call and queue status to “Cancelled”

◆ If phone number length is not 10
 Change call status to “Invalid Phone Number”

 Change queue status to “In-Complete”

Building the Queue

 Windows Service app
◆ Retrieves all calls with queue status of “Queued”

◆ Sends list to Twilio

 Twilio
◆ Calls patron

◆ As the call progresses, Twilio sends call statuses using W-API

 Initiated, Ringing, In-progress, Busy, Failed, No Answer

◆ When call is answered, Twilio uses the W-API to retrieve message to say in XML format:

 “Hello, this is ‘Alice’, your digital librarian from {library}, reminding you that…”

Making the Call

 When a call is completed or has failed

◆ Windows Service app uses the Polaris API to update the notification status

 Complete-Answered, Complete-Machine, In-complete: No answer, In-
complete: Busy, Failed: Max Retries

Call Cleanup

Polaris Data Inbound using Polaris API

Field Description

LoginBranchID Logon branch ID

LogonUserID Logon staff user ID

LogonWorkstationID Logon workstation ID

NotificationStatusID Notification Status ID

NotificationDeliveryDate Notification Delivery Date

DeliveryOptionID Delivery Option ID

Delivery String Phone number

PatronID ID of patron being notified

Polaris API Response

ID Notification Type

0 Success

-1 Failure General

-5 Failure Database

-6 Failure invalid parameter

 After the call is complete, Windows Service Apps retrieves the final cost of the
call from Twilio API and updates the call log for bookkeeping purposes

 Current rates:
◆ $0.0975 per call

◆ Average calls are under a minute

◆ 61 seconds is considered 2 minutes, etc.

 Inquire about Twilio.org
◆ $500 start-up credit

Twilio Cost

 Enable Telephony

 Enable Branch

 Number of attempts to call

 Call patron once a day

 Minutes to wait before calling

 Minutes to wait before retrying call

 Call Mail Holds

 Call Voice 1, 2, and/or 3

 Human call for holds

 Digital Voice Name

 Start/End Time for each day

 Enable Good-bye message

 Patron Codes to Exclude

Available Settings

Human Calls for Holds

Messages

Notification Type Message

Introduction This is {2}, your electronic librarian from {1} with a message for {0},

Holds we are holding {0} item/s for pickup until {1}.

Holds from another branch {0} is holding {1} item/s for pickup until {2}.

Reminders reminding you that you have {0} item/s that is/are soon due.

1st Overdue You have {0} item/s that are/is 7 days overdue.

2nd Overdue You have {0} item/s that is/are 14 days overdue. If this/these item/s are not returned

within 15 days, you will receive a bill for replacement costs.

Trailing message for overdues Please return these items as soon as possible.

Trailing message For inquiry, sign into your online account by visiting my account dot w l n online dot

org or call,, {0}.

Trailing message with renewals For inquiry or to renew your items online, visit my account dot w l n online dot org

or call,, {0}.

FUNCTION [dbo].[VerbalPluralCleanup]

(@vMsg varchar(255), @iCount int)

RETURNS varchar(255)

AS

BEGIN
IF @iCount > 1

BEGIN
SET @vMsg = REPLACE(@vMsg,'/s','s')

SET @vMsg = REPLACE(@vMsg,'this/','')

SET @vMsg = REPLACE(@vMsg,'/this','')
SET @vMsg = REPLACE(@vMsg,'is/','')

SET @vMsg = REPLACE(@vMsg,'/is','')

END
ELSE

SET @vMsg = REPLACE(@vMsg,'/s','')

SET @vMsg = REPLACE(@vMsg,'these/','')
SET @vMsg = REPLACE(@vMsg,'/these','')

SET @vMsg = REPLACE(@vMsg,'/are','')

SET @vMsg = REPLACE(@vMsg,'are/','')

RETURN @vMsg

Proper Pluralization of Message

 Circulation Supervisors receive daily reports of failed or in-complete calls

 Daily log files are created on the server
◆ detailing calls placed

◆ when API calls are made to Polaris API with return codes

◆ Cost per call

Logs and Reports

 Group by phone number instead of Patron
◆ Messages will be grouped together for multiple patrons using the same phone number to

eliminate multiple calls to the same number
 Ex: Parents with two kids (using the same phone number) will receive 1 call instead of 3 if each

cardholder has a notice.

 Web UI
◆ Allow circulation staff to pause Telephony while inter-delivery items are checked in at their

location

◆ View Queue

◆ Allow circulation staff to fix phone numbers for failed calls or invalid numbers and re-queue the
call
 Will also update Patron Record via Polaris API

◆ Make modifications to settings

◆ View reports

 Package software for your use

Upcoming Updates

 Incoming calls for account status and phone renewals

Future Update

 Polaris API Guides
◆ support.iii.com

 Polaris Developer Network
◆ developer.polarislibrary.com

Polaris API Resources

Public Function Encoder(ByVal myAccessKey As String, ByVal myHTTPMethod As String, _

 ByVal myURI As String, ByVal myHTTPDate As String, ByVal myPatronPassword As String)

 Dim secretBytes() As Byte = UTF8Encoding.UTF8.GetBytes(myAccessKey)

Dim hmac As HMACSHA1 = New HMACSHA1(secretBytes)

Dim dataBytes() As Byte

If myPatronPassword.Length > 0 Then

dataBytes = UTF8Encoding.UTF8.GetBytes(myHTTPMethod + myURI + myHTTPDate + myPatronPassword)

Else

 dataBytes = UTF8Encoding.UTF8.GetBytes(myHTTPMethod + myURI + myHTTPDate)

End If

Dim computedHash() As Byte = hmac.ComputeHash(dataBytes)

Dim computedHashString As String = Convert.ToBase64String(computedHash)

Return computedHashString

End Function

Polaris API Hash Sample in VB

Joe Fee

Technology Coordinator

(724) 420-5638

Joe.Fee@wlnonline.org

Questions

 The objective of this project is to:
◆ Replace outdated wireless access point equipment

 Newer devices were blocking login page due to deprecated encryption protocols

◆ Provide more details of deny reasons

◆ Allow patrons to pay fine through Wi-Fi without seeing a desk clerk

◆ Provide additional information for statistical reports

WCFLS Wireless Access Manager

 Cisco Meraki Access Points (MR32 and MR33)

 Windows IIS Server
◆ Web App – developed using ASP.net in Visual Basic

 Polaris API

 WCFLS SQL Server

 TekRADIUS Server (Free Edition)

WCFLS WAM Development

1. User connects to Wi-Fi, presented with
Splash Page

2. User provides library account
credentials
1. If stops exist on account, display to user

2. If not, show Internet Agreement

3. Upon clicking “Agree”, add RADIUS
User to DB

4. Wi-Fi Access Points authenticates
user with RADIUS User account

5. Redirects user to original website

WCFLS WAM Process

Client
Access

Point

Splash

Page

Polaris

API

SQL

Server

TekRA

DIUS

WWW

Splash Page

Authentication

RADIUS

Authentication

Approved

Access

 SQL Server Connection

 New or Existing DB

 Tables
◆ Create tables

 Renamed with “WiFi” prepended

 Specify Secret Key

TekRADIUS https://www.kaplansoft.com/TekRADIUS/

https://www.kaplansoft.com/TekRADIUS/

Thank you!

