
Tuesday, March 23 – Thursday, March 25
#IUG2021

How to SQL

Part 2

Jeremy Goldstein: Minuteman Library Network

Ray Voelker: The Public Library of Cincinnati and Hamilton County

Meet Jeremy and Ray...and Rufus and Audrey

Agenda

Part 1

● SQL Basics
○ Relational Databases
○ Joins
○ SQL Overview

● Statements
○ SELECT
○ WHERE
○ GROUP BY / HAVING

● Subqueries
● CASE

Part 2

● Sierra_view schema
○ Previewing data

● Data Types
○ Casting

● Functions
○ Aggregate/Filter

○ String Functions

○ Window Functions

● Combining Queries
○ EXISTS

○ INTERSECT/EXCEPT/UNION

Sierra_View

Overview

▪ Views Not Tables

▪ 360 tables

▪ 2780 columns

▪ How to reference a field

▪ schema.table.column

▪ sierra_view.item_record.id

▪ Only other schema you can access is pg_catalog

Sierra DNA

Sierra DNA (Database NAvigator)

http://techdocs.iii.com/sierradna/

Uses the same username & password as Supportal / CSDirect

The Sierra DNA

describes all the

SQL tables and the

columns in those

tables.

http://techdocs.iii.com/sierradna/

Documentation

ERD (Entity Relationship Diagram) View

This shows which tables are linkable –

there is an column in one table that

matches a column in another.

In this example, you can link

patron_record_address_type to

patron_record via patron_record_address

Previewing Your Data

To see sample data

from a table, right click

on the table (bib_view

in this example) and

then View Data and

then View Top 100

Rows

Screen using PGAdmin https://www.pgadmin.org/

https://www.pgadmin.org/

Explore your data

Screens using HeidiSQL https://www.heidisql.com/

https://www.heidisql.com/

The Query Based Approach

The Query Based Approach

Works with the SQL Sandbox from Part 1 too

https://site-checker.cincy.pl/iug2021/sierra_view?sql=SELECT+*%0D%0AFROM%0D%0Arecord_metadata%0D%0ALIMIT+100

A Shameless Plug

For more see 2020 presentation:

The Unofficial Guide to Sierra's SQL Views

https://www.innovativeusers.org/forum/getting-started/14114-l05-the-unofficial-guide-to-sierra-s-sql-views

Casting and Data Types

Data Types

https://www.postgresql.org/docs/current/datatype.html

● Some important and common PostgreSQL data types to understand
○ INTEGER: signed, four-byte integer (`1`, `-1`, `42`, etc)
○ NUMERIC: real number or NUMERIC(p,s) with p digits with s number after the

decimal point
■ MONEY: Numeric value to 2 decimals places including dollar sign

○ CHAR: single character, or `CHAR(n)` fixed-length of `n` characters with
space padded

○ VARCHAR(n): variable-length character string of `n` characters with
no space padded

○ TEXT: character string with unlimited length
○ BOOLEAN: true or false values (can use special `IS TRUE` or `IS FALSE`

clause to test)

https://www.postgresql.org/docs/current/datatype.html

CAST()

▪ CAST() will allow you to change the data type of a field
▪ :: is a shortcut for the CAST() function

SELECT
i.price,
CAST(i.price AS INT) AS price_int,
i.price::FLOAT AS price_float,
i.price::MONEY AS price_money

FROM
sierra_view.item_record i

Date Types

https://www.postgresql.org/docs/current/datatype-datetime.html

• Date / Time Types:
– DATE: ISO 8601 (`YYYY-MM-DD`):

`2019-03-17`
– TIMESTAMP: ISO 8601 date with time (24-hour clock):

`2019-03-17 11:41:13.979849`
Time zone is optional

– TIMESTAMP WITH TIME ZONE:
`2019-03-17 11:41:13.979849-04`

– INTERVAL: defines periods of time
• Traditional Postgres format:

`1 year 2 months 3 days 4 hours 5 minutes 6 seconds`

https://www.postgresql.org/docs/current/datatype-datetime.html

Timestamps

SELECT

rm.creation_date_gmt,

CAST(rm.creation_date_gmt AS DATE),

DATE(rm.creation_date_gmt),

rm.creation_date_gmt::DATE,

rm.creation_date_gmt::TIME

FROM

sierra_view.record_metadata rm

TO_CHAR()

• NOW() will return current timestamp

• TO_CHAR() can be used for date and timestamp formatting

SELECT

NOW(),

TO_CHAR(NOW(), 'MM-DD-YYYY'),

TO_CHAR(NOW(), 'Day Month DD, YYYY') AS date_long,

TO_CHAR(NOW(), 'J') AS julian,

TO_CHAR(NOW(), 'HH:MI AM TZ') AS time

• Template Patterns for Date/Time Formatting can be found here:

https://www.postgresql.org/docs/current/functions-formatting.html

https://www.postgresql.org/docs/current/functions-formatting.html

Additional Datetime Functions

SELECT

rm.creation_date_gmt,

AGE(rm.creation_date_gmt),

DATE_TRUNC('minute', rm.creation_date_gmt),

DATE_PART('hour', rm.creation_date_gmt),

EXTRACT(HOUR FROM rm.creation_date_gmt)

FROM

sierra_view.record_metadata rm

• List of available datetime functions can be found here:

https://www.postgresql.org/docs/9.1/functions-datetime.html

https://www.postgresql.org/docs/9.1/functions-datetime.html

Functions

Functions()

● Take the form of function_name(argument(s))

● Allow you to perform actions on your data

● Introduced Aggregate Functions in Part 1

○ Used along with GROUP

■ COUNT()

■ SUM()

■ STRING_AGG()

• Full list of Postgres Aggregate functions available here:

https://www.postgresql.org/docs/9.5/functions-aggregate.html

https://www.postgresql.org/docs/9.5/functions-aggregate.html

COUNT()

SELECT
i.location_code,
COUNT(i.id) AS total_items

FROM
sierra_view.item_record i

GROUP BY 1
ORDER BY 1;

COUNT() Count By Location and Status

SELECT
i.location_code,
i.item_status_code,
COUNT(i.id) AS total_items

FROM
sierra_view.item_record i

GROUP BY 1,2
ORDER BY 1;

FILTER()

SELECT
i.location_code,
COUNT(i.id) AS total_items,
COUNT(i.id) FILTER(WHERE i.item_status_code = '-') AS total_available,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'm') AS total_missing,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'n') AS total_billed

FROM
sierra_view.item_record i

GROUP BY 1
ORDER BY 1;

ID2RECKEY()

SELECT

o.id,

ID2RECKEY(o.record_id) AS "Record number"

FROM

sierra_view.order_record o;

ID2RECKEY()

String Functions()

● Take the form of function_name(argument(s))

● Allow you to perform actions on your data

● A few examples

○ LOWER(string) - convert to lowercase

○ LENGTH(string) - count characters in string

○ REPLACE(string, from text, to text) - replace all

• Full list of Postgres String functions available here:

https://www.postgresql.org/docs/9.1/functions-string.html

https://www.postgresql.org/docs/9.1/functions-string.html

CONCAT()

SELECT

CONCAT(p.last_name,', ',p.first_name, ' ', p.middle_name)

AS name

FROM

sierra_view.patron_record_fullname p;

● Use CONCAT() to combine strings into a single string

More on Concatenation

SELECT

CONCAT(p.last_name,', ',p.first_name, ' ', p.middle_name) AS NAME_concat,

CONCAT_WS(' ',p.last_name,',',p.first_name, p.middle_name) AS name_concat_ws,

p.last_name||', '||p.first_name||' '||p.middle_name AS name_pipes

FROM

sierra_view.patron_record_fullname p;

SUBSTRING()

SELECT

i.location_code

SUBSTRING(i.location_code,1,3) AS location_substring,

SUBSTRING(i.location_code,'^.{3}') AS location_regex

FROM sierra_view.item_record i

ORDER BY 1;

● Use SUBSTRING() to pull out parts of a string by their position

SPLIT_PART(): Author Last names

SELECT

SPLIT_PART(b.best_author, ‘, ‘, 1) AS last_name

FROM sierra_view.bib_record_property b;

● Use SPLIT_PART() to parse strings on a specified delimiter

Nesting String Functions

Using string functions to display an author in first name, last name order

Window Functions

Window Functions

Window Functions allow you to perform calculations across related rows

Use the Syntax [function]() OVER (field)

Some examples of window functions are:

● row_number()
● rank()
● ntile()

• The list of available window functions can be found here:

https://www.postgresql.org/docs/9.3/functions-window.html

https://www.postgresql.org/docs/9.3/functions-window.html

Top Requested Titles

SELECT

b.best_title,

COUNT(h.id) AS hold_count

FROM

sierra_view.hold h

JOIN

sierra_view.bib_record_property b

ON h.record_id = b.bib_record_id

GROUP BY 1

ORDER BY 2 DESC

RANK()

SELECT

b.best_title,

RANK() OVER (ORDER BY COUNT(h.id) DESC) AS rank

FROM

sierra_view.hold h

JOIN

sierra_view.bib_record_property b

ON h.record_id = b.bib_record_id

GROUP BY 1

ORDER BY 2

PARTITION

The PARTITION clause allow us to subdivide a table into smaller sets of rows

In combination with a window function we can then apply that function to
subsets of our data

RANK() OVER (
PARTITION BY b.material_code
ORDER BY COUNT(h.id) DESC

) AS rank

Top Requested Titles By Format

SELECT *

FROM (

SELECT

b.material_code, b.best_title,

RANK() OVER (PARTITION BY b.material_code ORDER BY COUNT(h.id) DESC) AS rank

FROM

sierra_view.hold h

JOIN

sierra_view.bib_record_property b

ON h.record_id = b.bib_record_id

GROUP BY 1,2

)inner_query

WHERE inner_query.rank < 6

ORDER BY 1,3

LAG() & LEAD()

▪ LAG() & LEAD() allow you to utilize a field from a neighboring row

▪ LAG(COUNT(id), 1)

○ Retrieves the value of the id field from 1 row prior.

Daily Checkout Comparison

SELECT

c.transaction_gmt::DATE,

COUNT(c.id) AS total_checkouts,

LAG(COUNT(c.id),1)

OVER (ORDER BY c.transaction_gmt::DATE) AS prior_day,

COUNT(c.id) - LAG(COUNT(c.id),1)

OVER (ORDER BY c.transaction_gmt::DATE) AS change

FROM sierra_view.circ_trans c

WHERE c.op_code = 'o'

GROUP BY 1

ORDER BY 1;

Combining Queries

EXISTS / NOT EXISTS

The Exists operator tests for the existence of a row in a subquery

If there is a result then TRUE else FALSE

Use it within a WHERE clause to limit results based on a subquery

Titles Where All Items Share an Itype

SELECT id2reckey(b.id)||'a' AS bib_number

FROM sierra_view.bib_record b

WHERE EXISTS (

SELECT l.id

FROM sierra_view.bib_record_item_record_link l

JOIN sierra_view.item_record i ON l.item_record_id = i.id

WHERE b.id = l.bib_record_id AND i.itype_code_num = '21')

AND NOT EXISTS (

SELECT l.id

FROM sierra_view.bib_record_item_record_link l

JOIN sierra_view.item_record i ON l.item_record_id = i.id

WHERE b.id = l.bib_record_id AND i.itype_code_num != '21')

ORDER BY 1

Titles Where All Items Share an Itype

Intersect/ Except/ Union

UNION returns the combined results of the two queries.

INTERSECT returns the results shared by the two queries

EXCEPT returns the results in the first query, but not in the second

All 3 follow two rules – the queries must have the same number of columns and

each column must match data type.

UNION

INTERSECT

EXCEPT

Query 1 Query 2

To combine the two queries, we insert UNION between them. This takes the results of each query and displays the
results of both as if they were part of one query. In order for this to work, UNION the combined queries must follow two
rules:

1. The queries must produce the same number of columns

2. Each column must match on data type.

One ORDER BY command may be applied to the combined results at the end of the last query to sort the entire set of
results.

Intersect/ Except/ Union

Col 1 Col 2 Col 3

int varchar date

Col 1 Col 2 Col 3

int varchar date

Query 1

Query 2

SELECT

ID2RECKEY(il.bib_record_id)||’a’ AS bib_num

FROM

sierra_view.bib_record_item_record_link il

INTERSECT

SELECT

ID2RECKEY(ol.bib_record_id)||’a’ AS bib_num

FROM sierra_view.bib_record_order_record_link ol

ORDER BY bib_num;

INTERSECT: Bibs with both Items and Orders

Time for One Last Query

Previously: Item Count By Location and Status

SELECT
i.location_code,
COUNT(i.id) AS total_items,
COUNT(i.id) FILTER(WHERE i.item_status_code = '-') AS total_available,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'm') AS total_missing,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'n') AS total_billed

FROM
sierra_view.item_record i

GROUP BY 1
ORDER BY 1;

SELECT
i.location_code,
COUNT(i.id) AS total_items,
COUNT(i.id) FILTER(WHERE i.item_status_code = '-') AS total_available,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'm') AS total_missing,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'n') AS total_billed

FROM
sierra_view.item_record i

GROUP BY 1

UNION

SELECT
'total',
COUNT(i.id) AS total_items,
COUNT(i.id) FILTER(WHERE i.item_status_code = '-') AS total_available,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'm') AS total_missing,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'n') AS total_billed

FROM
sierra_view.item_record i

ORDER BY location_code

UNION: Adding a Total Row

SELECT *
FROM(
SELECT

i.location_code,
COUNT(i.id) AS total_items,
COUNT(i.id) FILTER(WHERE i.item_status_code = '-') AS total_available,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'm') AS total_missing,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'n') AS total_billed

FROM
sierra_view.item_record i

GROUP BY 1

UNION

SELECT
'total',
COUNT(i.id) AS total_items,
COUNT(i.id) FILTER(WHERE i.item_status_code = '-') AS total_available,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'm') AS total_missing,
COUNT(i.id) FILTER(WHERE i.item_status_code = 'n') AS total_billed

FROM
sierra_view.item_record i

)inner_query

ORDER BY CASE
WHEN location_code = 'total' THEN 2
ELSE 1

END,
location_code

UNION: Adding a Total Row

Additional Resources

Additional Resources

● Presentation Site
○ https://site-checker.cincy.pl/iug2021/

● PostgreSQL Official Documentation
○ https://www.postgresql.org/docs/

● Stackoverflow
○ https://stackoverflow.com/

● SQL Cookbook by Anthony Molinaro
○ O’Reilly, 2005

● SQL Murder Mystery
○ https://mystery.knightlab.com/

https://site-checker.cincy.pl/iug2021/
https://www.postgresql.org/docs/10/static/queries.html
https://stackoverflow.com/
https://mystery.knightlab.com/

Find Us on Slack

Jeremy & Ray can be found along with many other Sierra SQL experts, on the
Sierra-ILS Slack workspace

Invite link will be available on the presentation site page:

https://howtosql.cincy.pl/iug2021/

Or e-mail Jeremy or Ray

https://howtosql.cincy.pl/iug2021/

JGI

Thank You!

Jeremy Goldstein

jgoldstein@minlib.net

Ray Voelker

ray.voelker@cincinnatilibrary.org

