
#IUG2020

Pre-Conference • Wednesday, April 15th

Main Conference • Thursday, April 16th – Saturday, April 18th#IUG2020

WYSIWYG Spine Labels

A User Friendly Printing Alternative

Andy Helck

Wilkinson Public Library, Telluride Colorado



#IUG2020

▪ In 2011 our library undertook a major re-cataloging our children’s materials. We 
did away with Dewey decimal numbers in our juvenile non-fiction books and our 
picture books. Our staff created categories and subcategories for a new set of call 
numbers for the collection.

Introduction

At this time, with several thousand books to relabel, the 

shortcomings of the Millennium system became apparent!



#IUG2020

We looked around to see what printers other libraries were using. We wanted a 
waterproof label and we were not afraid to pay a premium for the labels. 

We bought three Zebra brand TLP2844 desktop printers. These machines are 
running strong nearly 10 years later. 

If we were buying again today we might look at the Zebra ZD620

Our Hardware choice



#IUG2020

Native Printing in Millennium/Sierra

▪ The typical setup is to create Print 
Templates with a variety of font styles, font 
sizes, page orientation, etc.

▪ The cataloger opens the record and selects 
from the list of templates. There is no 
preview, so its not uncommon to have to try 
several different templates.

▪ Templates can be edited, and margins and 
font sizes adjusted. But this has to happen 
outside of Millennium or Sierra, and the 
modified template imported and installed.

▪ Many clicks can be required to create a 
single usable spine label. 



#IUG2020

Anatomy of a Print Template

▪ Right Click on the exported template 
file and “Open with Notepad”

▪ You’re looking at an XML file which 
defines many, many more text areas 
and headers and banners than you 
need for a simple spine label. You can 
delete empty document elements

▪ The beginning of the file defines 
multiple fields. These are the data 
from Sierra that you can apply to your 
document.

▪ There is only a single text element of 
interest, a <detail> toward the very 
bottom

</field> <field name="callNumericStart" 

class="java.lang.String">

<fieldDescription><![CDATA[Data Element 2: 

subfield a/h (1st occurrence only of subfield a), numerical 

content until decimal point, from c-tagged varfld Purpose: 

call number]]></fieldDescription> </field>



#IUG2020

What it takes to print a spine label

▪ Identify and break up the parts of the 
call number…parsing

▪ Decide how to arrange those parts on 
separate lines…stacking

▪ Pick a font, size and style…formatting

▪ Allow the user to maximize the font 
size as needed…filling

▪ Center the text in the printed label as 
accurately as possible…margins

BLUES

F

FRANKLIN

ARETHA BLUES

F

FRANKLIN

ARETHA

BLUES

F

FRANKLIN

ARETHA BLUES

F

FRANKLIN

ARETHA



#IUG2020

Nothing ventured, Nothing gained

I’d been programming since my school days and in my previous career, mostly in obscure languages like 6809 

Assembler and Ladder Logic for motion controllers. I wanted to learn a modern language object-oriented and I 

had used Turbo C back in the 1990s. 

C++ was too scary, so I decided to learn the Microsoft language called “C Sharp.”

A Windows Form Application is the classic Windows program that offers a graphic user interface. This means 

buttons, textboxes, menus, etc. These controls include the RichTextBox which is like a miniature version of 

Microsoft Word. 

Inside a RichTextBox our text can be arranged into paragraphs, indented, italicized and formatted. It has turned 

out to be a great choice as a spine label editing tool!



#IUG2020

A Tale of Two Situations

In a way, I traded difficulties. In Millennium and Sierra, the data we needed – call numbers – was ready at hand. 

But the fine level control over formatting, rotation and font was missing. My program gave great control over the 

finished label, but getting the call numbers into the program became the hurdle.

I started out with the simplest tools. Either just type the call number in correctly by hand, or copy and paste from 

the item record into the program. Simple rules to parse and stack and remove the subfield indicators were 

implemented.

I then added the ability to import a text file of barcodes, titles and call numbers. These files were of course 

generated in the Create Lists module. The user could now search by barcode and bring up the call number and 

title for printing.

Most recently I’ve added the ability to access the database directly over the internet using SierraAPI technology. 

It takes a few seconds to retrieve each record, but the convenience is worth it!



#IUG2020

We’ve just searched for 

barcode 1230001252628 and 

because I have a large file of 

all our DVD items loaded, we 

found the movie we were 

looking for.

Before I print the label I will 

enlarge the text and perhaps 

try some different Arial fonts.

Our library doesn’t use the 

pocket label on the right, but it 

too can be formatted and sized.



#IUG2020

This next item is non-fiction book, and its spine label fits 

better in Portrait orientation. The Dewey number has been 

stacked into 3 lines according to some basic parsing rules.

As this was not a DVD, the program 

had to look for the information using 

the new API technology from III. It 

only takes a few seconds to load a 

record and get the call number!



#IUG2020

Part 2
How the Code Works!



#IUG2020

Thank Goodness for Old School Computing!

The Zebra printers are known in the industry as 
barcode printers. Companies that ship a lot of 
packages use these to print UPS and Fedex labels 
by the thousands, and they have been in use for
decades.

The original software interface goes back years, to 
something called Eltron Programming Language, 
or EPL and EPL2. Newer and more complicated
languages, like Zebra Programming Language 
ZPL exist, but the older EPL is supported in all the 
newest Zebra printers.



#IUG2020

Simple Graphics for Simple Programming!

Google will instantly return results for “EPL2 Programming Manual” I found the GW command after an hour’s reading

WYSIWYG means “What You See Is What You Get.”

At one time this was considered something of a

radical idea, now of course we are all so used to

computers instantly and perfectly showing us the

“print preview” or the finished web page as we are 

editing the HTML that we take it for granted!

In order to provide this feature in my program, I sized 

the textboxes in which you compose the labels to be 

the exact same size (in pixels) as the paper label that 

is being printed.

The Zebra prints 203 dots per inch (dpi) whereas the 

traditional Windows display is the much coarser 96 

dpi. The textbox looks big on the screen, which 

makes it easier for my aging eyesight!



#IUG2020

Common Ground: the Windows Bitmap

A simple color bitmap underlies all of windows 

graphics programming, and its exposed in C# in a 

very straightforward manner.

Essentially what happens when we hit PRINT is that 

the program captures the bitmap from the textbox 

and sends it to the printer using the GW command.

The one twist is if we print in Landscape mode, the 

program has to rotate the color bitmap. That’s 

because the textbox on the screen keeps its text 

horizontal (but changes dimension) where in reality 

the printer will apply the text vertically. I easily found 

code examples online to do this.

This basic bit of coding went quite quickly. I soon 

had a basic program with a single textbox that 

would print in various fonts and both orientations.

Well I’d be fibbing if I didn’t admit there were 

some difficulties along the way. The 

Windows bitmap is 4 bytes per pixel for full 

color, the printer only needs 1 byte per pixel.

More vexing is the fact that the RichTextBox 

is not a native Windows control (its part of 

.NET winforms) so I had to look online for a 

ToBitmap() method. But all the code is 

written, and its available on GitHub to 

download and do with as you like!

C# is an object oriented language and it’s a 

bit more rigid than JavaScript, so there is a 

learning curve having to do with classes and 

objects.



#IUG2020

Dealing with Create Lists…

By the time I wrote this program, I had been 

dealing with the vagaries of the Create Lists 

Export function in Millennium and Sierra. If 

anyone has wrestled with getting Excel or other 

programs to correctly parse the various 

delimiters, text qualifiers, repeat field indicators, 

and prevent collisions with obscure MARC21 

characters, they will know what I am talking 

about.

So when I added the ability to import a large file 

of CSV data from Millennium, I decided to 

embed a utility that would not get fooled by

weird syntax!

In the Import Tab you can directly edit the text file if you have to, or alter the parsing algorithm, 

and immediately observe the results in the middle panel, called the data grid!



#IUG2020

Part 3
More Features that make Users 

Happy



#IUG2020

Printer Alignment and Stacking

The Zebra printer has a fairly loose 

guide system when it comes to 

holding the roll of labels left to right. 

On the other hand the machine is 

very precise about detecting the top 

and bottom edges of the label each 

time it advances the paper.

When printing from Millennium, we 

used to hold our thumbs against the 

edge of the labels to bias the print 

job one way or another.

The above printer settings tab allows 

the user to fine adjust the actual 

position of the print image on the 

label. Some adjustment is required, 

especially after replacing the roll or 

changing the ribbon.



#IUG2020

Talk to your System Administrator…

This is the newest feature I’ve added 

and in some ways the coolest.

API is a general industry term for 

“connect to the database without 

using SQL queries” and Innovative 

Interfaces has been working very 

hard to make these effective and 

easy to implement.

You will need to enter credentials in 

this window that will authenticate to 

your library system. You will need an 

“API Key and Secret” that your 

admin can provide you with. Make 

sure you get permissions on Item 

and Bib records.

Access is read-only so there is no 

way to accidentally change your 

records!



#IUG2020

Pick your Fonts!

Pick your Size!

Pick your Orientation!

Look before you Print!

No more surprises!

The rectangles in the first few labels 

are test patterns that help you align 

the image with the paper labels

Labels, labels and more labels…



#IUG2020

Thanks for Coming!


